Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Biochem Mol Toxicol ; 38(4): e23702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567888

RESUMO

Doxorubicin (DOX) is widely used in cancer treatment but the dose-related toxicity of DOX on organs including the liver limit its use. Therefore, there is great interest in combining DOX with natural compounds with antioxidant properties to reduce toxicity and increase drug efficacy. Esculetin is a natural coumarin derivative with biological properties encompassing anti-inflammatory and antioxidant activities. In light of these properties, this study was meticulously crafted to investigate the potential of esculetin in preventing doxorubicin (DOX)-induced hepatotoxicity in Sprague-Dawley rats. The rats were divided into a total of six groups: control group, DOX group (administered DOX at a cumulative dose of 5 mg/kg intraperitoneally every other day for 2 weeks), E50 group (administered 50 mg/kg of esculetin intraperitoneally every day), E100 group (administered 100 mg/kg of esculetin intraperitoneally every day) and combined groups (DOX + E50 and DOX + E100) in which esculetin was administered together with DOX. The treatments, both with DOX alone and in combination with E50, manifested a reduction in catalase (CAT mRNA) levels in comparison to the control group. Notably, the enzymatic activities of superoxide dismutase (SOD), CAT, and glutathione peroxidase (GPx) witnessed significant decreases in the liver of rats treated with DOX. Moreover, DOX treatment induced a statistically significant elevation in malondialdehyde (MDA) levels, coupled with a concurrent decrease in glutathione (GSH) levels. Additionally, molecular docking studies were conducted. However, further studies are needed to confirm the hepatoprotective properties of esculetin and to precisely elucidate its mechanisms of action.


Assuntos
Antioxidantes , Doxorrubicina , Umbeliferonas , Ratos , Animais , Antioxidantes/farmacologia , Ratos Sprague-Dawley , Simulação de Acoplamento Molecular , Doxorrubicina/toxicidade , Estresse Oxidativo , Glutationa/metabolismo , Fígado/metabolismo , Antibióticos Antineoplásicos/farmacologia
2.
Food Sci Nutr ; 12(3): 1928-1939, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455224

RESUMO

This study presents the first findings regarding extraction, isolation, enzyme inhibition, and antioxidant activity. The oral mucosal wound-healing process was investigated using propolis water extract (PWE) incubation with gingival fibroblast cells and concluded that propolis was effective on the oral mucosal wound-healing pattern compared to untreated controls. Additionally, phenolic compounds (fraxetin, apigenin, galangin, pinobanksin, chrysin, etc.) were isolated from propolis, and their chemical structures were elucidated using comprehensive spectroscopic methods. The antioxidant and anti-Alzheimer potential activities of PWE and some isolated compounds were screened and revealing their inhibitory effects on acetylcholinesterase (AChE) with IC50 values ranging from 0.45 ± 0.01 to 1.15 ± 0.03 mM, as well as remarkable free-radical scavenging and metal reduction capacities. The results suggest that these compounds and PWE can be used as therapeutic agents due to their antioxidant properties and inhibitory potential on AChE. It can also be used for therapeutic purposes since its wound-healing effect is promising.

3.
J Biomol Struct Dyn ; : 1-19, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533902

RESUMO

Various carbonic anhydrase (CA) enzyme isoforms are known today. In addition to the use of CA inhibitors as diuretics, antiepileptics and antiglaucoma agents, the inhibition of other specific isoforms of CA was reported to have clinical benefits in cancers. In this study, two groups of 1,3,4-thiadiazole derivatives were designed and synthesized to act as human CA I and II (hCA I and hCA II) inhibitors. The activities of these compounds were tested in vitro and evaluated in silico studies. The activity of the synthesized compounds was also tested against acetylcholinesterase (AChE) to evaluate the relation of the newly designed structures to the activity against AChE. The synthesized compounds were analyzed by 1H NMR,13C NMR and high-resolution mass spectroscopy (HRMS). The results displayed a better activity of all the synthesized compounds against hCA I than that of the commonly used standard drug, Acetazolamide (AAZ). The compounds also showed better activity against hCA II, except for compounds 5b and 6b. Only compounds 6a and 6c showed superior activity against AChE compared to the standard agent, tacrine (THA). In silico studies, including absorption, distribution, metabolism and excretion (ADME) and drug-likeness evaluation, molecular docking, molecular dynamic simulations (MDSs) and density functional theory (DFT) calculations, were compatible with the in vitro results and presented details regarding the structure-activity relationship.Communicated by Ramaswamy H. Sarma.

4.
Bioorg Chem ; 145: 107221, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387398

RESUMO

Despite significant developments in therapeutic strategies, Diabetes Mellitus remains an increasing concern, leading to various complications, e.g., cataracts, neuropathy, retinopathy, nephropathy, and several cardiovascular diseases. The polyol pathway, which involves Aldose reductase (AR) as a critical enzyme, has been focused on by many researchers as a target for intervention. On the other hand, spiroindoline-based compounds possess remarkable biological properties. This guided us to synthesize novel spiroindoline oxadiazolyl-based acetate derivatives and investigate their biological activities. The synthesized molecules' structures were confirmed herein, using IR, NMR (1H and 13C), and Mass spectroscopy. All compounds were potent inhibitors with KI constants spanning from 0.186 ± 0.020 µM to 0.662 ± 0.042 µM versus AR and appeared as better inhibitors than the clinically used drug, Epalrestat (EPR, KI: 0.841 ± 0.051 µM). Besides its remarkable inhibitory profile compared to EPR, compound 6k (KI: 0.186 ± 0.020 µM) was also determined to have an unusual pharmacokinetic profile. The results showed that 6k had less cytotoxic effect on normal mouse fibroblast (L929) cells (IC50 of 569.58 ± 0.80 µM) and reduced the viability of human breast adenocarcinoma (MCF-7) cells (IC50 of 110.87 ± 0.42 µM) more than the reference drug Doxorubicin (IC50s of 98.26 ± 0.45 µM and 158.49 ± 2.73 µM, respectively), thus exhibiting more potent anticancer activity. Moreover, molecular dynamic simulations for 200 ns were conducted to predict the docked complex's stability and reveal significant amino acid residues that 6k interacts with throughout the simulation.


Assuntos
Aldeído Redutase , Diabetes Mellitus , Camundongos , Animais , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estrutura Molecular , Simulação de Dinâmica Molecular
5.
J Cell Mol Med ; 28(4): e18118, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332529

RESUMO

Opioids can be used for medical and non-medical purposes. Chronic pain such as cancer, as well as the frequent use of such drugs in places such as operating rooms and intensive care units, and in non-medical areas like drug abuse the effects and side effects of these drugs need to be examined in more detail. For this purpose, the effects of fentanyl and remifentanil drugs on neuroinflammation, oxidative stress and cholinesterase metabolism were investigated. Neuron cells (CRL-10742) were used for the evaluation of the toxicity of fentanyl and remifentanil. MTT, PON1 activity and total thiol levels for its effect on oxidative stress, AChE and BChE activities for its effect on the cholinergic system, and TNF, IL-8 and IL-10 gene levels for its neuroinflammation effect were determined. The highest neurotoxic dose of fentanyl and remifentanil was determined as 10 µg/mL. It was observed that the rate of neuron cells in this dose has decreased by up to 61.80% and 56.89%, respectively. The IL-8 gene expression level in both opioids was down-regulated while IL 10 gene level was up-regulated in a dose-dependent manner compared to the control. In our results, the TNF gene expression level differs between the two opioids. In the fentanyl group, it was seen to be up-regulated in a dose-dependent manner compared to the control. Fentanyl and remifentanil showed an inhibitory effect against PON1, while remifentanil showed an increase in total thiol levels. PON1, BChE and total thiol activities showed similarity with MTT.


Assuntos
Dor Crônica , Fentanila , Humanos , Fentanila/toxicidade , Remifentanil/farmacologia , Piperidinas/toxicidade , Interleucina-8 , Doenças Neuroinflamatórias , Analgésicos Opioides/toxicidade , Estresse Oxidativo , Neurônios , Dor Crônica/induzido quimicamente , Compostos de Sulfidrila , Arildialquilfosfatase
6.
Arch Pharm (Weinheim) ; 357(2): e2300497, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972283

RESUMO

In this study, the mechanisms by which the enzymes glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR), glutathione-S-transferase (GST), and thioredoxin reductase (TrxR) are inhibited by methotrexate (MTX) were investigated, as well as whether the antioxidant morin can mitigate or prevent these adverse effects in vivo and in silico. For 10 days, rats received oral doses of morin (50 and 100 mg/kg body weight). On the fifth day, a single intraperitoneal injection of MTX (20 mg/kg body weight) was administered to generate toxicity. Decreased activities of G6PD, 6PGD, GR, GST, and TrxR were associated with MTX-related toxicity while morin treatment increased the activity of the enzymes. The docking analysis indicated that H-bonds, pi-pi stacking, and pi-cation interactions were the dominant interactions in these enzyme-binding pockets. Furthermore, the docked poses of morin and MTX against GST were subjected to molecular dynamic simulations for 200 ns, to assess the stability of both complexes and also to predict key amino acid residues in the binding pockets throughout the simulation. The results of this study suggest that morin may be a viable means of alleviating the enzyme activities of important regulatory enzymes against MTX-induced toxicity.


Assuntos
Flavonas , Metotrexato , Tiorredoxina Dissulfeto Redutase , Ratos , Animais , Metotrexato/farmacologia , Tiorredoxina Dissulfeto Redutase/metabolismo , Glutationa Transferase/metabolismo , Via de Pentose Fosfato , Relação Estrutura-Atividade , Glutationa Redutase/metabolismo , Peso Corporal
7.
Chem Biodivers ; 21(2): e202301824, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149720

RESUMO

The present study focused on the synthesis and characterization of novel pyrazole carboxamide derivatives (SA1-12). The inhibitory effect of the compounds on cholinesterases (ChEs; AChE and BChE) and carbonic anhydrases (hCAs; hCA I and hCA II) isoenzymes were screened as in vitro. These series compounds have been identified as potential inhibitors with a KI values in the range of 10.69±1.27-70.87±8.11 nM for hCA I, 20.01±3.48-56.63±6.41 nM for hCA II, 6.60±0.62-14.15±1.09 nM for acetylcholinesterase (AChE) and 54.87±7.76-137.20 ±9.61 nM for butyrylcholinesterase (BChE). These compounds have a more effective inhibition effect when compared to the reference compounds. In addition, the potential binding positions of the compounds with high affinity for ChE and hCAs were demonstrated by in silico methods. The results of in silico and in vitro studies support each other. As a result of the present study, the compounds with high inhibitory activity for metabolic enzymes, such as ChE and hCA were designed. The compounds may be potential alternative agents used as selective ChE and hCA inhibitors in the treatment of Alzheimer's disease and glaucoma.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Inibidores da Colinesterase/química , Estrutura Molecular , Relação Estrutura-Atividade , Aminas , Pirazóis/farmacologia
8.
Chem Biodivers ; 20(11): e202301063, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769192

RESUMO

Eleven new thiosemicarbazone derivatives (1-11) were designed from nine different biologically and pharmacologically important isothiocyanate derivatives containing functional groups such as fluorine, chlorine, methoxy, methyl, and nitro at various positions of the phenyl ring, in addition to the benzyl unit in the molecular skeletal structure. First, their substituted-thiosemicarbazide derivatives were synthesized from the treatment of isothiocyanate with hydrazine to synthesize the designed compounds. Through a one-step easy synthesis and an eco-friendly process, the designed compounds were synthesized with yields of up to 95 % from the treatment of the thiosemicarbazides with aldehyde derivatives having methoxy and hydroxy groups. The structures of the synthesized molecules were elucidated with elemental analysis and FT-IR, 1 H-NMR, and 13 C-NMR spectroscopic methods. The electronic and spectroscopic properties of the compounds were determined by the DFT calculations performed at the B3LYP/6-311++G(2d,2p) level of theory, and the experimental findings were supported. The effects of some global reactivity parameters and nucleophilic-electrophilic attack abilities of the compounds on the enzyme inhibition properties were also investigated. They exhibited a highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (KI values are in the range of 23.54±4.34 to 185.90±26.16 nM, 103.90±23.49 to 325.90±77.99 nM, and 86.15±18.58 to 287.70±43.09 nM for AChE, hCA I, and hCA II, respectively). Furthermore, molecular docking simulations were performed to explain each enzyme-ligand complex's interaction.


Assuntos
Tiossemicarbazonas , Tiossemicarbazonas/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Acetilcolinesterase/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Anidrase Carbônica I , Inibidores Enzimáticos/química , Estrutura Molecular , Isotiocianatos
9.
J Cell Mol Med ; 27(21): 3388-3394, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37772794

RESUMO

It is known that oxidative stress originating from reactive oxygen species plays a role in the pathogenesis of Alzheimer's disease. In this study, the role of antioxidant status associated with oxidative stress in Alzheimer's disease was investigated. Peripheral blood samples were obtained from 28 healthy individuals (as control) and 28 Alzheimer's patients who met the National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer's Disease and Related Disorders Association criteria. Catalase, glutathione S-transferase and paraoxonase 1 enzyme activities in blood plasma and glutathione S-transferase enzyme activities in erythrocytes were determined by spectrophotometer. Catalase, glutathione S-transferase and presenilin 1 gene expressions in leukocytes were determined using qRT-PCR. Data were analysed with SPSS one-way anova, a LSD post hoc test at p < 0.05. The activity of each enzyme was significantly reduced in Alzheimer's patients compared to control. The catalase gene expression level did not change compared to the control. Glutathione S-transferase and presenilin 1 gene expression levels were increased compared to the control.


Assuntos
Doença de Alzheimer , Antioxidantes , Humanos , Antioxidantes/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Catalase/genética , Catalase/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Estresse Oxidativo/genética , Glutationa Transferase/genética , Expressão Gênica
10.
J Biomol Struct Dyn ; : 1-19, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540185

RESUMO

In this study, a library of twelve beta-lactam-substituted benzenesulfonamides (5a-l) was synthesized using the tail-approach method. The compounds were characterized using IR, 1H NMR, 13C NMR and elemental analysis techniques. These newly synthesized compounds were tested for their ability to inhibit the activity of two carbonic anhydrases (hCA) isoforms, I and II, and acetylcholinesterase (AChE) in vitro. The results showed that the synthesized compounds were potent inhibitors of hCA I, with KIs in the low nanomolar range (66.60-278.40 nM) than the reference drug acetazolamide (AAZ), which had a KI of 439.17 nM. The hCA II was potently inhibited by compounds 5a, 5d-g and 5l, with KIs of 69.56, 39.64, 79.63, 74.76, 78.93 and 74.94 nM, respectively (AAZ, KI of 98.28 nM). Notably, compound 5a selectively inhibited hCA II with a selectivity of > 4-fold over hCA I. In terms of inhibition of AChE, the synthesized compounds had KIs ranging from 30.95 to 154.50 nM, compared to the reference drug tacrine, which had a KI of 159.61 nM. Compounds 5f, 5h and 5l were also evaluated for their ability to inhibit the MCF-7 cancer cell line proliferation and were found to have promising anticancer activity, more potent than 5-fluorouracil and cisplatin. Molecular docking studies suggested that the sulfonamide moiety of these compounds fits snugly into the active sites of hCAs and interacts with the Zn2+ ion. Furthermore, molecular dynamics simulations were performed for 200 ns to assess the stability and dynamics of each enzyme-ligand complex. The acceptability of the compounds based on Lipinski's and Jorgensen's rules was also estimated from the ADME/T results. These results indicate that the synthesized molecules have the potential to be developed into effective and safe inhibitors of hCAs and AChE and could be lead agents.Communicated by Ramaswamy H. Sarma.

11.
Chem Biodivers ; 20(8): e202300611, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37470688

RESUMO

Sulfonamide compounds known as human carbonic anhydrase (hCA) inhibitors are used in the treatment of many diseases such as epilepsy, antibacterial, glaucoma, various diseases. 1,3-diaryl-substituted triazenes and sulfaguanidine are used for therapeutic purposes in many drug structures. Based on these two groups, the synthesis of new compounds is important. In the present study, the novel 1,3-diaryltriazene-substituted sulfaguanidine derivatives (SG1-13) were synthesized and fully characterized by spectroscopic and analytic methods. Inhibitory effect of these compounds on the hCA I and hCA II was screened as in vitro. All the series of synthesized compounds have been identified as potential hCA isoenzymes inhibitory with KI values in the range of 6.44±0.74-86.85±7.01 nM for hCA I and with KI values in the range of 8.16±0.40-77.29±9.56 nM for hCA II. Moreover, the new series of compounds showed a more effective inhibition effect than the acetazolamide used as a reference. The possible binding positions of the compounds with a binding affinity to the hCA I and hCA II was demonstrated by in silico studies. In conclusion, compounds with varying degrees of affinity for hCA isoenzymes have been designed and as selective hCA inhibitors. These compounds may be potential alternative agents that can be used to treat or prevent diseases associated with glaucoma and hCA inhibition.


Assuntos
Anidrases Carbônicas , Glaucoma , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Sulfaguanidina , Isoenzimas/metabolismo , Anidrase Carbônica I/metabolismo , Glaucoma/tratamento farmacológico , Estrutura Molecular
12.
Int J Biol Macromol ; 239: 124232, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001773

RESUMO

Sulfonamides are among the most promising potential inhibitors for carbonic anhydrases (CAs), which are pharmaceutically relevant targets for treating several disease conditions. Herein, a series of benzenesulfonamides bearing 1,2,3-triazole moiety as inhibitors of human (h) α-CAs (hCAs) were designed using the tail approach. The design method combines a benzenesulfonamide moiety with a tail of oxime and a zinc-binding group on a 1,2,3-triazole scaffold. Among the synthesized derivatives, the naphthyl (6m, KI of 68.6 nM, SI of 10.3), and methyl (6a, KI of 56.3 nM, SI of 11.7) derivatives (over hCA IX) and propyl (6c, KI of 95.6 nM, SI of 2.7), and pentyl (6d, KI of 51.1 nM, SI of 6.6) derivatives (over hCA XII) displayed a noticeable selectivity for isoforms hCA I and II, respectively. Meanwhile, derivative 6e displayed a potent inhibitory effect versus the cytosolic isoform hCA I (KI of 47.8 nM) and tumor-associated isoforms hCA IX and XII (KIs of 195.9 and 116.9 nM, respectively) compared with the reference drug acetazolamide (AAZ, KIs of 451.8, 437.2, and 338.9 nM, respectively). Derivative 6b showed higher potency (KI of 33.2 nM) than AAZ (KI of 327.3 nM) towards another cytosolic isoform hCA II. Nevertheless, substituting the lipophilic large naphthyl tail to the 1,2,3-triazole linked benzenesulfonamides (6a-n) raised inhibitory effect versus hCA I and XII and selectivity towards hCA I and II isoforms over hCA IX. Evaluation of the cytotoxic potential of the synthesized derivatives was conducted in L929, MCF-7, and Hep-3B cell lines. Several compounds in the series demonstrated significant antiproliferative activity and minimal cytotoxicity. In the molecular docking study, the sulfonamide moiety interacted with the zinc-ion and neatly fit into the hCAs active sites. The extension of the tail was found to participate in diverse hydrophilic and hydrophobic interactions with adjacent amino acids, ultimately influencing the effectiveness and specificity of the derivatives.


Assuntos
Anidrase Carbônica I , Anidrases Carbônicas , Humanos , Anidrase Carbônica I/metabolismo , Anidrase Carbônica IX , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Triazóis/farmacologia , Triazóis/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/química , Sulfonamidas/farmacologia , Sulfonamidas/química , Isoformas de Proteínas/metabolismo , Aminas , Estrutura Molecular
13.
Drug Dev Res ; 84(2): 275-295, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598092

RESUMO

Aldose reductase (AR) is a crucial enzyme of the polyol pathway through which glucose is metabolized under conditions of hyperglycemia related to diabetes. A series of novel acetic acid derivatives containing quinazolin-4(3H)-one ring (1-22) was synthesized and tested for in vitro AR inhibitory effect. All the target compounds exhibited nanomolar activity against the target enzyme, and all compounds displayed higher activity as compared to the reference drug epalrestat. Among them, Compound 19, named 2-(4-[(2-[(4-methylpiperazin-1-yl)methyl]-4-oxoquinazolin-3(4H)-ylimino)methyl]phenoxy)acetic acid, displayed the strongest inhibitory effect with a KI value of 61.20 ± 10.18 nM. Additionally, these compounds were investigated for activity against L929, nontumoral fibroblast cells, and MCF-7, breast cancer cells using the MTT assay. Compounds 16 and 19 showed lower toxicity against the normal L929 cells. The synthesized compounds' (1-22) absorption, distribution, metabolism, and excretion properties were also evaluated. Molecular docking simulations were used to look into the possible binding mechanisms of these inhibitors against AR.


Assuntos
Ácido Acético , Aldeído Redutase , Aldeído Redutase/metabolismo , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Humanos , Feminino
14.
Arch Pharm (Weinheim) ; 356(4): e2200570, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36603162

RESUMO

In the search for small-molecule aldose reductase (AR) inhibitors, new tetrazole-hydrazone hybrids (1-15) were designed. An efficient procedure was employed for the synthesis of compounds 1-15. All hydrazones were subjected to an in vitro assay to assess their AR inhibitory profiles. Compounds 1-15 caused AR inhibition with Ki values ranging between 0.177 and 6.322 µM and IC50 values ranging between 0.210 and 0.676 µM. 2-[(1-(4-Hydroxyphenyl)-1H-tetrazol-5-yl)thio]-N'-(4-fluorobenzylidene)acetohydrazide (4) was the most potent inhibitor of AR in this series. Compound 4 markedly inhibited AR (IC50 = 0.297 µM) in a competitive manner (Ki = 0.177 µM) compared to epalrestat (Ki = 0.857 µM, IC50 = 0.267 µM). Based on the in vitro data obtained by applying the MTT test, compound 4 showed no cytotoxic activity toward normal (NIH/3T3) cells at the tested concentrations, indicating its safety as an AR inhibitor. Compound 4 exhibited proper interactions with crucial amino acid residues within the active site of AR. In silico QikProp data of all hydrazones (1-15) were also determined to assess their pharmacokinetic profiles. Taken together, compound 4 stands out as a promising inhibitor of AR for further in vivo studies.


Assuntos
Aldeído Redutase , Hidrazonas , Hidrazonas/farmacologia , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Aminoácidos , Simulação de Acoplamento Molecular
15.
Mol Divers ; 27(4): 1713-1733, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36103032

RESUMO

In the polyol pathway, aldose reductase (AR) catalyzes the formation of sorbitol from glucose. In order to detoxify some dangerous aldehydes, AR is essential. However, due to the effects of the active polyol pathway, AR overexpression in the hyperglycemic state leads to microvascular and macrovascular diabetic problems. As a result, AR inhibition has been recognized as a potential treatment for issues linked to diabetes and has been studied by numerous researchers worldwide. In the present study, a series of acyl hydrazones were obtained from the reaction of vanillin derivatized with acyl groups and phenolic Mannich bases with hydrazides containing pharmacological groups such as morpholine, piperazine, and tetrahydroisoquinoline. The resulting 21 novel acyl hydrazone compounds were investigated as an inhibitor of the AR enzyme. All the novel acyl hydrazones derived from vanillin demonstrated activity in nanomolar levels as AR inhibitors with IC50 and KI values in the range of 94.21 ± 2.33 to 430.00 ± 2.33 nM and 49.22 ± 3.64 to 897.20 ± 43.63 nM, respectively. Compounds 11c and 10b against AR enzyme activity were identified as highly potent inhibitors and showed 17.38 and 10.78-fold more effectiveness than standard drug epalrestat. The synthesized molecules' absorption, distribution, metabolism, and excretion (ADME) effects were also assessed. The probable-binding mechanisms of these inhibitors against AR were investigated using molecular-docking simulations.


Assuntos
Aldeído Redutase , Hidrazonas , Aldeído Redutase/química , Aldeído Redutase/metabolismo , Hidrazonas/farmacologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Benzaldeídos/farmacologia
16.
Biotechnol Appl Biochem ; 70(1): 415-428, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35638720

RESUMO

Human carbonic anhydrase VII (hCA VII), a cytosolic enzyme, defends against oxidative stress by preventing reactive oxygen species from forming. In our study, first, hCA VII was cloned into Escherichia coli (One Shot Mach1-T1R) strain by using cDNA of the human brain and successfully expressed. The integrity of the plasmid generated by colony PCR was checked, and after, for protein expression, the plasmid was transformed into E. coli BL21 (DE-3) strain. hCA VII expression was observed after 6 h of isopropyl-D-1-thiogalactopyranoside (IPTG) induction. The fusion protein containing hexahistidine (6xHis) was purified with 7.02 EU/mg of specific activity, had 48.07% of purification yield, and approximately 21-folds using a ProbondTM nickel chelating resin affinity column. Then, both molecular mass determination and purity control of the purified recombinant enzyme was done by SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The mass of the SUMO-hCA VII fusion protein was calculated as 46.77 kDa. As a result of Western blot analysis using anti-His G-HRP antibody, the fusion protein was detected as approximately 45 kDa. Furthermore, the characterization assays and in vitro inhibition studies were done for the recombinant enzyme. KI values of these agents were found between 0.29 µM and 157.6 mM. Finally, molecular docking investigations of these antibiotics were undertaken to understand further the binding interactions on the active site of this recombinant enzyme.


Assuntos
Anidrases Carbônicas , Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Plasmídeos
17.
Mol Divers ; 27(4): 1735-1749, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36136229

RESUMO

To discover alternative substances to compounds used to treat many diseases, especially treating Alzheimer's disease (AD) and Parkinson's disease targeting carbonic anhydrase (hCA) and acetylcholinesterase (AChE) enzymes, is important. For this purpose, a series of novel bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives were synthesized, and their inhibitory capacities were screened against hCA isoenzymes (hCA I and II) and AChE. Possible binding mechanisms of inhibitors to the active site were elucidated by in silico studies, and the results were supported by in vitro results. Moreover, the percent radical scavenging capacities of the derivatives were also evaluated. The derivatives (SG1-4 and SO1-4) were more effective against hCAs compared to standard drug acetazolamide (KI values of 98.28-439.17 nM for hCA I and II, respectively) and exhibited the highest inhibition with the KIs in the ranges of 2.54 ± 0.50-41.02 ± 7.52 nM for hCA I, 11.20 ± 2.97-67.14 ± 13.58 nM for hCA II, and 257.60 ± 27.84-442.60 ± 52.13 nM for AChE. Also, compounds SG1 and SO1 also showed ABTS radical scavenging activity at the rate of 70% and 78%, respectively. These results will contribute to the literature for the rational design and synthesis of new potent and selective inhibitors targeting hCAs and AChE with multifunctional effects such as radical scavenging as well as inhibition. This study focused on the synthesis and inhibitory effects of bis-ureido-substituted sulfaguanidine (SG1-4) and sulfisoxazole (SO1-4) derivatives against human hCA I and II isoforms and AChE. In order to test synthesized derivatives' free radical scavenging potentials were the DPPH and ABTS assays. In silico studies elucidated possible binding mechanisms of inhibitors to the active site.


Assuntos
Anidrases Carbônicas , Humanos , Anidrases Carbônicas/metabolismo , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Sulfisoxazol , Sulfaguanidina , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Relação Estrutura-Atividade , Estrutura Molecular
18.
Chem Biodivers ; 20(1): e202200656, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36538730

RESUMO

Cancer is a serious problem affecting the health of all human societies. Chemotherapy refers to the use of drugs to kill cancer or the origin of cancer. In the past three decades, researchers have studied about proteins and their roles in the production of cancer cells. Glutathione S-transferases (GSTs) are a superfamily of enzymes that play a key role in cellular detoxification, protecting against reactive electrophiles attacks, including chemotherapeutic agents. Glutathione reductase (GR) is an important antioxidant enzyme involved in protecting the cell against oxidative stress. In this current study, GST and GR enzymes were purified from human erythrocytes using affinity chromatography. GR was obtained with a specific activity of 5.95 EU/mg protein and a 52.38 % yield. GST was obtained with a specific activity of 4.88 EU/mg protein and a 74.88 % yield. The effect of fluorophenylthiourea derivatives on the purified enzymes was investigated. Afterward, KI values were found to range from 23.04±4.37 µM-59.97±13.45 µM for GR and 7.22±1.64 µM-41.24±2.55 µM for GST. 1-(2,6-difluorophenyl)thiourea was showed the best inhibition effect for both GST and GR enzymes. The relationships of inhibitors with 3D structures of GST and GR were explained by molecular docking studies.


Assuntos
Glutationa Transferase , Glutationa , Humanos , Simulação de Acoplamento Molecular , Glutationa/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Glutationa Redutase/metabolismo
19.
Arch Pharm (Weinheim) ; 356(4): e2200554, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36575148

RESUMO

New Schiff base-bearing thiosemicarbazones (1-13) were obtained from 4-hydroxy-3,5-dimethoxy benzaldehyde and various isocyanates. The structures of the synthesized molecules were elucidated in detail. Density functional theory calculations were also performed to determine the spectroscopic properties of the compounds. Moreover, the enzyme inhibition activities of these compounds were investigated. They showed highly potent inhibition effects on acetylcholinesterase (AChE) and human carbonic anhydrases (hCAs) (KI values are in the range of 51.11 ± 6.01 to 278.10 ± 40.55 nM, 60.32 ± 9.78 to 300.00 ± 77.41 nM, and 64.21 ± 9.99 to 307.70 ± 61.35 nM for AChE, hCA I, and hCA II, respectively). In addition, molecular docking studies were performed, confirmed by binding affinities studies of the most potent derivatives.


Assuntos
Tiossemicarbazonas , Humanos , Estrutura Molecular , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/farmacologia , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Anidrase Carbônica I , Benzaldeídos/farmacologia , Teoria da Densidade Funcional , Anidrase Carbônica II
20.
J Biomol Struct Dyn ; 41(20): 10919-10929, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36576122

RESUMO

Carbonic Anhydrases (CAs) are an important family of metalloenzymes that contain zinc (Zn2+) ions in their active site and catalyze the conversion of carbon dioxide to bicarbonate and proton and found in all living organisms. Sulfonamides are well-known inhibitors of CAs isoenzymes. In this study, a series of benzenesulfonamide derivatives (9a-h) containing 1,2,3-triazole-moiety were designed, synthesized and their structures were characterized by spectroscopic methods. In addition, molecular structures of compounds 5a, 5 b, 9e and 9f were elucidated by X-ray diffraction technique. To investigate drug similarity of 9a-h compounds, Lipinski's five rules (ADMET: absorption, distribution, metabolism, excretion and toxicity) were carried out by in silico studies. According to results, the compounds showed drug-like properties. Docking studies were applied to determine the scores, interactions and binding modes of compounds 9a-h against hCA I and hCA II enzymes. Compound 9c (-5.13 kcal/mol docking score) against hCA I enzyme and 9 h (-5.32 kcal/mol docking score) against hCA II enzyme showed potent inhibitory properties. The binding interactions of the compounds with the carbonic anhydrases were examined by docking studies.Communicated by Ramaswamy H. Sarma.


Assuntos
Anidrase Carbônica I , Anidrases Carbônicas , Anidrase Carbônica I/metabolismo , Relação Estrutura-Atividade , Triazóis/farmacologia , Triazóis/química , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/química , Sulfonamidas/farmacologia , Sulfonamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...